
8.1 INTRODUCTION IN 
CONSTRAINED OPTIMIZATION 



Notations 

•  Problem Formulation 

•  Feasible set 

•  Compact formulation 

  

min
x!!n

f x( )  subject to 
ci x( ) = 0 i !E

ci x( ) " 0 i !I
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! = x | ci x( ) = 0,i "E; ci x( ) # 0,i "I{ }

minx!" f x( )  



Local  and Global Solutions 

•  Constraints make make the problem simpler since the search 
space is smaller.  

•  But it can also make things more complicated. 
 
•  Unconstrained problem has one minimum, constrained problem 

has MANY minima.  

min x2 +100( )2 + 0.01x1
2  subject to x2 ! cos x1 " 0



Types of Solutions 
•  Similar as the unconstrained case, except that we now restrict it to a 

neighborhood of the solution.  
•  Recall, we aim only for local solutions.  



Smoothness 
•  It is ESSENTIAL that the problem be formulated with smooth 

constraints and objective function (since we will take derivatives).  
•  Sometimes, the problem is just badly phrased. For example, when it is 

done in terms of max function. Sometimes the problem can be 
rephrased as a constrained problem with SMOOTH constrained 
functions.  

max f1 x( ), f2 x( ){ } ! a" f1 x( ) ! a
f2 x( ) ! a
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Examples of max nonsmoothness removal 

•  In Constraints: 

•  In Optimization:  

x 1 = x1 + x2 !1"max #x1, x1{ }+max #x2 , x2{ } !1"
#x1 # x2 !1, x1 # x2 !1, # x1 + x2 !1, x1 + x2 !1

min f (x); f (x) = max x2, x{ }; !
min t

subject to max x2, x{ } " t
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min t

subject to x2 " t, x " t
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8.2 EXAMPLES 



Examples 

•  Single equality constraint (put in KKT form) 

•  Single inequality constraint (put in KKT form, point out 
complementarity relationship) 

 
•  Two inequality constraints (KKT, complementarity relationship, 

sign of the multiplier)  

min x1 + x2 subject to x1
2 + x2

2 ! 2 = 0

min x1 + x2 subject to ! x1
2 + x2

2 ! 2( ) " 0

min x1 + x2 subject to ! x1
2 + x2

2 ! 2( ) " 0, x1 " 0



Multiplier Sign Example 

•  There are two solutions for the Lagrangian equation, but only 
one is the right.  



8.3 IMPLICIT FUNCTION 
THEOREM REVIEW 



Refresher (Marsden and Tromba) 







8.4 FIRST-ORDER 
OPTIMALITY CONDITIONS 
FOR NONLINEAR 
PROGRAMMING  



Inequality Constraints: Active Set 

•  One of the key differences with equality constraints. 
•  Definition at a feasible point x.   

  

min
x!!n

f x( )  subject to 
ci x( ) = 0 i !E

ci x( ) " 0 i !I
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  x !" x( ) A x( ) = E ! i !I ; ci x( ) = 0{ }



•  We need the equivalent of the “Jacobian has full rank” condition 
for the case with equality-only. 

•  This is called “the constraint qualification”. 
•  Intuition:  “geometry of feasible set”=“algebra of feasible set”    

“Constraint Qualifications” for inequality 
constraints 



Tangent and linearized cone 

•  Tangent Cone at x (can prove it is a cone)  

•  Linearized feasible direction set (EXPAND)  

•  Essence of constraint qualification at a point x 
(“geometry=algebra”):  

 
T! x( ) = d " zk{ }#!, zk $ x," tk{ }#! + ,tk $ 0, limk$%

zk & x
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F x( ) = d dT!ci x( ) = 0,i "E; dT!ci x( ) # 0,i "A x( )! I{ }$T% x( )& F x( )

 T! x( ) = F x( )



What are sufficient conditions for constraint 
qualification? 

•  The most common (and only one we will discuss in the class): 
the linear independence constraint qualification (LICQ).  

•  We say that LICQ holds at a point                if 
           has full row rank.  
•  How do we prove equality  of the cones ?  If LICQ holds, then, 

from IFT 

!cA x( )x !"

  

d !F x( )" cA x( ) !x t( )( ) = t#cA x( )d"$% > 0,&0 < t < %;

c
A x( ) !x t( )( ) > 0;cA x( )"I !x t( )( ) ' 0;cE !x t( )( ) = 0" !x t( )!(" d !T( x( )



8.4.1 OPTIMALITY 
CONDITIONS FOR EQUALITY 
CONSTRAINTS 



IFT for optimality conditions in the equality-only 
case 

•  Problem: 
•  Assumptions: 

1.        is a solution  
2.  LICQ:          has full row rank.  

•  From LICQ: 
•  From IFT:   

•  As a result       is a solution of NLP iff       solves unconstrained 
problem:  

–    

 (NLP) min f x( ) subject to c x( ) = 0; c :!n ! !m

x*
!c x( )
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( ;)cH x*( )*"m+m;)cH x*( )  invertible.

  
!N x*( )," xD( ) , N x*

D( )such that x #N x*( )!$% xH = " xD( )
x*  xD

*

 
minxD

f xD ,! xD( )( )



Properties of Mapping 

•  From IFT: 

•  Two important consequences  

   

 
c xD ,! xD( )( ) = 0"#xD

c xD ,! xD( )( ) +#xH
c xD ,! xD( )( )#xD

! xD( ) = 0

 

(1)!xD
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First-order optimality conditions 

•  Optimality of unconstrained optimization problem 
 

 
•  The definition of the Lagrange Multiplier Result in the first-order 

(Lagrange, KKT) conditions:  
  

!xD
f x*D ," x*D( )( ) = 0#!xD

f x*D ," x*D( )( ) +!xH
f x*D ," x*D( )( )!xD
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A more abstract and general proof 

•  Optimality of unconstrained optimization problem 
 

•  Using 
•  We obtain:  
•  We thus obtain the optimality conditions:  

 
DxD

f x*D ,! x*D( )( ) = 0"#xD
f x*D ,! x*D( )( ) +#xH

f x*D ,! x*D( )( )#xD
! x*D( ) = 0"#x f x*( )Z = 0

 !" #!m s.t. $x f x*( )T = $xc x*( )T " %$x f x*( )& "T$xc x *( ) = 0

!x f x*( )Z = 0"!x f x*( )T #ker ZT( ) = Im !c x*( )T$
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kerM ! ImMT ; dim kerM( ) + dim ImMT( ) = nr cols M



The Lagrangian 

•  Definition 
•  Its gradient 

•  Its Hessian 

•  Where 

•  Optimality conditions:      

 L x,!( )= f x( )"!T c x( )

 
!L x,"( ) = !f x( )#"T!c x( ), c x( )T$
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!2L x,"( ) = !xx
2 L x,"( ) !c x( )T

!c x( ) 0
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!xx
2

L x,"( ) = !xx
2 f x,"( )# "i

i=1

m

$ !xx
2 ci x,"( )

 !L x,"( ) = 0



Second-order conditions 

•  First, note that:  
•  Sketch of proof: total derivatives in  : 

•  Second derivatives:       

  
ZT!2

xxL xD ," xD( )( )Z = D2
xDxD

f xD ," xD( )( ) != 0

 

DxD
f xD ,! xD( )( ) = "xD

f xD ,! xD( )( )# $ xD ,! xD( )( )T "xD
c x*D ,! x*D( )( ) =

"xD
L xD ,! xD( )( ),$ xD ,! xD( )( )( );

"xH
f x*D ,! x*D( )( ) = $ xD ,! xD( )( )T "xH

c x*D ,! x*D( )( )

 xD

 

DxDxD
f xD ,! xD( )( ) = "xD

f xD ,! xD( )( )# $ xD ,! xD( )( )T "xD
c xD ,! xD( )( ) =

"xDxD
L xD ,! xD( )( ),$ xD ,! xD( )( )( ) +"xD

! xD( )T "xHxD
L xD ,! xD( )( ),$ xD ,! xD( )( )( )

#DD $ xD ,! xD( )( )T( )"xD
c xD ,! xD( )( )



Computing Second-Order Derivatives 

•  Expressing the second derivatives of Lagrangian 
 

 

•  Solve for total derivative of multiplier and replace conclusion 
follows.  
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Summary: Necessary Optimality Conditions 

•  Summary:  

•  Rephrase first order:  
 
•  Rephrase second order necessary conditions.  

  

 
!xL x*,"*( ) = 0

 
!xc x*( )w = 0" wT!xx

2 L x*,#*( )w $ 0

  
!L x*,"*( ) = 0; ZT!2

xxL x*D ,# x*D( )( )Z != 0



Sufficient Optimality Conditions 

•  The point is a local minimum if LICQ and the following holds:  
 
•  Proof: By IFT, there is a change of variables such that  
 

•  The original problem can be phrased as 

 
(1)!xL x*,"*( ) = 0; (2)!xc x*( )w = 0#$% > 0 wT!xx

2 L x*,"*( )w & % w 2

  

u !N 0( )" !n#ncu$ x u( ); "x !N x*( ),c "x( ) = 0%& "u !N 0( ); "x = x "u( )
'xc x*( )'ux "u( )

"u=0
= 0; Z = 'ux "u( )

minu f x u( )( )



Sufficient Optimality Conditions 

•  We can now piggy back on theory of unconstrained 
optimization, noting that. 

 
•  Then from theory of unconstrained optimization 
we have a local isolated minimum at 0 and thus the original 

problem at     . (following the local isomorphism above)   

  

!u f x u( )( )
u=0

= !xL x*,"*( ) = 0;
!uu
2 f x u( )( )

u=0
= ZT!xx

2 L x*,"*( )Z ! 0; Z = !ux u( )

x*



Another Essential Consequence 
•  If LICQ+ second-order conditions hold at the solution      , then 

the following matrix must be nonsingular 
•   (EXPAND). 

 
•  The system of nonlinear equations has an invertible Jacobian,  
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8.4.2 FIRST-ORDER 
OPTIMALITY CONDITIONS 
FOR MIXED EQ AND INEQ 
CONSTRAINTS 



The Lagrangian 

•  Even in the general case, it has the same expression 

 

   
L x( ) = f x( )! "ici x( )

i#E!A
$



First-Order Optimality Condition Theorem 

 
!f x*( )" #T

A x*( )!cA x*( ) x
*( ) = 0 $ Multipliers are unique !!

Equivalent Form:  



Sketch of the Proof 

•  If        is a solution of the original problem, it is also a solution of 
the problem.   

 
•  From the optimality conditions of the problem with equality 

constraints, we must have (since LICQ holds) 

•  But I cannot yet tell by this argument 

x*

 
min f x( ) subject to c

A x*( ) x( ) = 0

 

! "i{ }i#A x*( ) such that   $f x*( )% "i$ci x
*( )

i#A x*( )
& = 0

!i " 0



Sketch of the Proof: The sign of the multiplier 

•  Assume now one multiplier has the “wrong” sign. That is 

•  Since LICQ holds, we can construct a feasible path that “takes 
off” from that constraint (inactive constraints do not matter 
locally) 

•       

  j !A x*( )! I , " j < 0

  

c
A x*( ) !x t( )( ) = tej ! !x t( )"# Define b = d

dt
!x t( )t=0 !$cA x( )b = ej

d
dt
f !x t( )( )t=0

= $f x*( )T b = %T
cA x( )

$cA x( )b = % j < 0 !

&t1 > 0, f !x t1( )( ) < f !x 0( )( ) = f x*( ), CONTRADICTION!!



Strict Complementarity 

•  It is a notion that makes the problem look “almost” like an 
equality.  



8.5 SECOND-ORDER 
CONDITIONS 



Critical Cone 

•  The subset of the tangent space, where the objective function 
does not vary to first-order. 

•  The book definition.  

•  An even simpler equivalent definition.  
 
  

 
C x*,!*( ) = w"T# x*( ) $f x*( )T w = 0{ }



Rephrasing of the Critical Cone 

•  By investigating the definition 

•  In the case where strict complementarity holds, the cones has a 
MUCH simplex expression.  

  

w!C x*,"*( )#
$ci x

*( )T w = 0 i !E

$ci x
*( )T w = 0 i !A x*( )! I "i

* > 0
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*( )T w % 0 i !A x*( )! I "i

* = 0
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w!C x*,"*( )#$ci x

*( )w = 0 % i !A x*( )



Statement of the Second-Order Conditions 

•  How to prove this? In the case of  Strict 
Complementarity the critical cone is the same as 
the problem constrained with equalities on active 
index.  

•  Result follows from equality-only case.  



Statement of second-order sufficient conditions 

•  How do we prove this? In the case of strict complementarity again from 
reduction to the equality case.  

  

 x
* = argminx f x( )  subject to cA x( ) = 0



How to derive those conditions in the other case?  

•  Use the slacks to reduce the problem to one with equality 
constraints. 

•  Then, apply the conditions for equality constraints.   
•  I will assign it as homework.  

  

min
x!Rn ,z!RnI ,

f (x)

s.t. cE x( ) = 0

cI x( )"# $% j & z j
2 = 0 j = 1,2,…nI



Summary: Why should I care about Lagrange 
Multipliers?  

•  Because it makes the optimization problem in principle 
equivalent to a nonlinear equation. 

•  I can use concepts from nonlinear equations such as Newton’s 
for the algorithmics.   
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